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Abstract. A Green's function technique is used to study the effecrs of spin-phonon interactions 
in squaric acid including higher-order anharmonic terms. The renormalized energy and the 
damping of the spin waves and the phonons have been evaluated for the fint time. The 
anharmonicity effects play an imponant role in the vicinity of T, and above T,. 

1. Introduction 

Blinc [l] and de Gennes [Z] proposed the king model in a transverse field for the description 
of order-disorder ferroelectrics (FE). In the theoretical studies of the king model it has been 
shown that a first-order phase transition is possible only if the number of coupled spins is 
four or larger [3-51. A first-order phase transition in certain order-disorder FE has been 
observed recently. The transition of C4H204 near Tc = 373 K is just one example [6]. 
The squaric acid (C4H204, H 2 s ~ )  has a layered structure [7]. Each molecule is a square 
with oxygen ions at its four vertices linked by hydrogen bonds on equal footing. At 
room temperature the layers~ are ferroelectrically ordered and antifenoelectrically stacked. 
Protons move randomly along the hydrogen bonds above the transition temperature and 
ordered motion results at a critical temperature. The net dipole moment produced in this 
case lies in the plane of the square, a different situation from that of KDP [8], one of the 
typical order-disorder FE. So, it is clear that in a ferroelectric material of order-disorder 
type, the four hydrogen bonds usually appear as a group and every one is equivalent to 
another. This means that the four-body interaction in such structures is generally important. 
In fact, Deiningham and Meiuing 171 have pointed out the existence of four-body interaction 
in the C4H2O4 structure but neglected it in their calculations; hence, their result is still a 
second-order phase transition. 

Recently Wang et al. [9, IO] on the basis of the pseudospin theory have considered 
the four-spin interaction to study the first-order phase transition in squaric acid. 'The 
critical behaviour is investigated and characteristic temperatures are calculated. The relative 
polarization is discussed. Using the same model and the method of the retarded Green's 
function Wesselinowa and Marinov [ l l ]  have determined the relative polarization, the 
spin-wave energy and the damping and discussed these for different model parameters 
and for different temperatures. Chaudhuri et al [12] have investigated the temperature 
dependences of the dielectric properties at different fixed pressures and the phase transition 
of H$Q and its deuterated form using the four-sublattice pseudospin cluster Hamiltonian, 
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together with a pseudospin-phonon interaction term. The small value of the transition 
entropy AS observed in H& [I31 seems to be due to the large value of the proton-lattice 
interaction constant, i.e. this indicated the importance of proton-phonon and phonon-phonon 
interactions. Recently Sera  etal [I41 have investigated the temperature dependence of some 
Raman modes of KDP below the ferroelecttic phase transition. Two lattice modes display 
an exponential dependence on T which is explained by third- and fourth-order anharmonic 
effets. 

Matsubara etal [I51 presented a microscopic theory to explain the improper ferroelastic 
phase transition in squaric acid. It was shown that the strong coupling between the lattice 
distortion and the proton system is important. H2sQ belongs to the space group C4h. 
The spontaneous strain tensor should be either E ,  - &I or 86 which have symmetry of 
B, type. Then, the possible lowest-order coupling between the strain and order parameter 
is linear in the strain and quadratic in the order parameter. Within the molecular field 
approximation, they discussed the thermodynamic properties of the model system and 
calculated theoretically the elastic constant and dielectric susceptibility. They have left 
many interesting dynamical problems untouched. These include the intensity and line width 
of Raman scattering [16, 171, the spin-lattice relaxation time in NMR experiment and so on 
[18-20]. It will be an interesting theoretical problem to work out such dynamical properties 
on the basis of a model which can afford a good account of the static properties [9-111. 

This is the aim of the present paper-to extend the treatment of our previous paper 
1111 including the spin-phonon interaction, i.e. the calculation of the static and dynamic 
properties of order-disorder FE with first-order phase transitions on the basis of the king 
model in a transverse field including four-spin and spin-phonon interactions, taking into 
account higher-order anharmonic phonon interaction terms. 
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2. Model and method 

The Hamiltonian of the coupled pseudospin-phonon model is given by 

Hs is the Hamiltonian of the pseudospin system 
H = H,+ H p +  Hsp.  (1) 

where is the tunnelling frequency. Jij  is the two-body coupling and it represents the 
coupling between protons in neighbouring layers as well as those in the same layer. The 
four-body coupling K i j ~  represents the interaction between the four hydrogen bonds in the 

Hp contains the lattice vibrations including third- and fourth-order anharmonic phonon 
(2404 group. 

interactions 

where Q9, Ps and o9 are, respectively, the normal coordinate, momentum and frequency 
of the lattice mode with wave vector q. The vibrational normal coordinate Q, and the 
momentum Pq can be expressed in terms of phonon creation and annihilation operators: 

(4) p9 = i(oq/2)'lz(a~ - a-q) Qq  = (209)-'~2(aq + t 
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where [a,; a,:]- t = A,,,. 
Hsp descnbes the interaction of the pseudospins with the phonons 

for coupling phonons to the spin-wave excitations in Hs in first and second order, 
respectively. The summations extend over the vector r; - rj = h connecting all possible 
pairs of spin sites in the crystal, and e, is the polarization of the phonon with wave number q. 

In the ferroelectric phase we have (Sx) # 0 and ( S E )  # 0; therefore it is appropriate to 
choose a new coordinate system by rotating the original one used in (I) by an angle 6' in 
the xz plane, 

The rotation angle 8 is determined by the requirement (Sx') = 0 in the new coordinate 
system. bl and b: are the Pauli operators in the rotated system; pl = b:bl. In this paper we 
consider only the case S = 112. 

The retarded Green's function to be calculated is defined in matrix form as 

6 k ( f )  = -iO(r)([Bk(t); i3L.1). (7) 
t t The operator Bk stands symbolically for the set bel b-e, ab. a+ For an approximate 

evaluation of this Green's function we use Tserkovnikov's method [21], which is appropriate 
for spin problems. After a formal integration of the equation of motion for the Green 
function one obtains 

6&) = -iO(t)([Bk; BL]) exp(-iE&)t) (8)' 

where 
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with jk = [Bk,  Hint]. The time-independent term 
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Ek = ( [ [Bk. HI, BLl)/([Bk, ELI) (10) 

gives the spin-wave energy in the generalized Hmee-Fock approximation. The remaining 
time-dependent term includes damping effects. 
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Figure 1. Temperature dependence of the spin-wave damping: 1. y(k)": 2. yu; 3. yrr,, 

3. The spin-wave spectrum 

3.1. The generalized Hartree-Fock approximation 

The energy of the coupled mode in the generalized Hartree-Fock approximation is 

E2(k) = 0.5[W; + E :  * ((w: - E ; ) ~  + 4u0k sin28&k) 
x ( 2 ~ s i n 0  + o . ~ u J ~ ~ ~ c o s ~ ~ ) ) ~ ' ~ ] .  (11) 

The E- mode describes an in-phase motion of the pseudospin system and the lattice, 
whereas in the E+ mode the two systems move with opposite phase. In the case of a + 0 
equation (1  1) shows, since sin 0 - R, that no coupling exists between the spin waves and 
the phonons. ?& is the renormalized energy of the phonons and will be discussed in the 
next section. Ek is the energy of the pseudospin system: 

E(k) = */m 

(14) 
U .  

4 
<L2 = -- sinZOJes(k). 

r(T) is the relative polarization in the direction of the mean field which is equal to ZY') 
[ l l ] .  In the generalized Hartree-Fock approximation we find the following two solutions 
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for the rotation angle 0: 

cos8 = 0 (i.e. 0 = n/2) if T 2 T, 
sin 0 = 4Q/(u Jar) = uJu if T Q Tc 

From the last equation (17) it is evident that the pseudospin-phonon interaction leads to a 
renormalization of the spin-spin interaction constant, which is now temperature dependent. 
Proton-phonon interactions can thus produce a phase transition even though the direct 
spin-spin interaction-constant would be zero. The effects of the phonon anharmonicity 
parameters Ak and Bk ire to decrease the effective exchange coupling .id while the effects 
of the pseudospin-lattice coupling Fk and Rk are to increase its value. These observations 
for Ak and Fk  are in agreement with those of Ganguli et al [22]. The terms containing Rk 
and Eh are not taken into account in this work [223. 

- -  I------ 

100 200 300 

T [XI T [KI 
Figure 2. Temperature dependence of the phonon mode 
with WII = 90 cm-I: 1. Cph; 2, &I = 0. Ro = 0. 
i.e. without spin-phonon interaction; 3. Au = 0. RI = 
0. Ro = 0, i.e. without fourthader anharmonic phonon 
interaction. 

Figmx 3. Temperature dependence of the phonon 
damping with wg = 90 cm-I: 1. yph(k); 2, 61 = 
0. Re = 0: 3. AI) = 0. Bu = 0. 

3.2. Spin-wave damping 

In order to obtain spin-wave damping caused by the spin-phonon interaction we consider 
approximately the integral term in (9). In our calculations we use the approximate dynamics 
bk(t) x bkexp(-iekt) and a&) x Ukexp(-i&t). We get the following expression for 

(18) 
nS is the damping part which comes from the spin-spin interaction and has been discussed 
in our previous paper [I 11: 

y;1: 

Y(k)" = Ys + K p .  
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with 

y,(k) takes its maximum values at IC = 0; it increases with decreasing tunnelling frequency 
52. 

ysp is the damping due to the spin-phonon interaction: 

z sin2 o cos20 F i  a ( 6 k  - Ek) 
4il 

Ysp = 

X [ e p ( l  + &-q + Ai+,) - fip-qAk+ql 8 ( w p  - 9 - q  + &k+q - Ek) ( N )  
with 

Nq = (alaq) = 1/ [exp(cq/~)  - I]. (25)  

The spin-wave damping (18) was numerically calculated using the following model 
parameters appropriate for squaric acid Jo = 344 cm-', KOJJO = 1.33. 1;1 = 
2.168 cm-', A0 = -12 cm-', BO = 7 cm-', FO = 36 cm-', RO = -25 cm-', 00 = 
90 cm-', T' = 373 K. figure 1 shows the temperature dependence of the spin-wave 
damping. 

At T = 0 equation (24)  simplifies to 

At low temperatures ysp is very small. The anhannonic terms do not contribute to the 
spin-wave damping at T = 0. With increasing temperature, the damping ysp increases, and 
the contribution of the anharmonic term increases, too. For temperatures close to T, and 
above T, where U and cos % vanish we obtain 
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x6(r;*+q-p - G q  + &p - &k). (27) 

It can be seen that the anharmonic terms give a major contribution to the spin-wave damping 
y, in the vicinity of T, and above T, and so they must be taken into account if we want to 
obtain correct results. 

For small wave vectors IC the damping due to the spin-phonon  interaction^ is small in 
comparison with the damping due to the spin-spin interaction, 

Ysp(W << y s m .  (28) 

4. The phonon spectrum 

4.1. Thephonon energy 

For the phonon energy we obtain in the generalized Hartree-Fock approximation the 
following expression in the ferroelectric region: 

with 

The phonon energy Wk is renormalized due to the anharmonic phonon interaction terms. If 
they are not taken into account, then is identical with the energy of the uncoupled phonon 
Wk [23]. o p h   is dependent on the tunnelling frequency Q. The anharmonicity increases the 
initial phonon frequency. The modification of the phonon frequency appears to be very 
important [22] as in the case of Rochelle salt where the disappearance of ferroelectricity 
1241 in presence  of foreign impurities was explained [25] by considering the change of 
renormalized phonon frequency [26].  

We have studied the temperature dependence of the phonon frequencies from (29) for one 
particular phonon mode with 00 = 90 cm-' using the same model parameters as in figure 1. 
The phonon mode displays a non-linear dependence on temperature when T approaches Tc 
(figure 2). Since it is a lattice mode this behaviour can be described to strong anharmonic 
effects. It can also be associated with an anomalous increase of the dielectric constant in 
the same temperature interval. If we take into account only the third-order interaction terms 
in (3) (i.e. A0 ='O, BO # 0), then we obtain a linear temperature dependence close to T, 
(curve 3). It is evident that there is a strong anharmonicity affecting the phonon modes 
near the transition point from the ferroelectric to the paraelectric phase. The temperature 
behaviour of the phonon mode is in very good agreement with the experimental data of 
Nakashima et a1 I161 and of Samuelson etnl [17]. 
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4.2. The phonon damping 

Calculations yield the following expression for the phonon damping in the ferroelectric 
region: 

J M Wesselinowa et a1 

nu(16cos4B +sin4B) 
16N2 R&p[jiq(l +lip + fip+k-q) - zpfip+k-ql 

9. P 

+ 

X[S(G, - - Gkj- ~ c - 5 ~  + zkwq - G ~ ) ] .  (31) 
Analogously to section 4.1 we want to discuss the phonon damping on temperature, wave 
vector, and anharmonicity. The temperature dependence of yph obtained using the same 
model parameters as in figure 1 is shown in figure 3. 

Firstly we consider the zero-temperature limit T = 0: 

(32) 
HU . 2 n 

yph(T=O) = ( q s l n  BC0S’BFZ-k - c o s ~ B R E ) ~ ( E ~ - & ) .  16 

Provided that the &function can be satisfied, we get a phonon damping at T = 0 due to 
the spin-phonon coupling. The spin-phonon anharmonic terms contribute to Yph at T = 0 
and at low temperatures. The phonon-phonon anharmonic terms do not contribute to yph at 
T = 0 and at low temperatures. A finite value for yph at T = 0 was found experimentally 
in KDP by Serra et al [14] and squaric acid by Nakashima et al [I61 and Samuelson et al 
[17]. With increasing temperature yph increases, but remains finite at T = T,. The phonon 
damping in the paraelectric region is given by the last two terms in (31) 

X[S(G9 - Gk--q - Gk) - 8(-W9~+ G)k--q -&e)] .  (33) 
Wc can see that only the third- and fourth-order phonon-phonon anharmonic terms contribute 
to the phonon damping in the vicinity of T, and above 5; and so they play an important 
role. Above T, yph is nearly temperature independent. 

The temperature behaviour of the phonon damping obtained is in very good agreement 
with the experimental data for H’SQ [16, 17, 271. 

For small wave vector k and at temperatures above T,, ypj, is small compared with the 
spin-wave damping y” 

Yph(lc) << Y”(lC)- (34) 
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The dynamical structure factor is calculated via the imaginary part of the phonon Green’s 
function (( Q k ;  &)). The intensity increases with increasing temperature, in agreement 
witkthe findings of Samuelsen er al [17]. 

5. Conclusions 

We have studied the king model in a transverse field including four-spin interaction, which 
is responsible for the first-order phase transition observed in order-disorder FE, and spin- 
phonon interaction, taking o into account higher-order anharmonic phonon interaction terms. 

Using the method of the retarded Green’s function we have determined the spin-wave 
and the phonon spectrum. We have shown the importance of the anharmonic terms in 
the spin-phonon interaction and in the phonon-phonon interaction. If WE want to obtain 
correct results, they must be taken into account. As far as we know, the expressions and 
the discussion of the spin-wave energy, the phonon energy and the damping are given for 
the first time. 
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