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Abstract. A Green's function technique is used to study the effects of spin—phonon interactions
i squaric acid including higher-order anharmonic terms. The renommalized energy and the
damping of the spin waves and the phonons have been evaluated for the first time. The
anharmonicity effects play an important role in the vicinity of 7, and above T..

1. Introduction

Blinc [1] and de Gennes [2] proposed the Ising model in a transverse field for the description
of order—disorder ferrcelectrics (FE). In the theoretical studies of the Ising maodel it has been
shown that a first-order phase transition is possible only if the number of coupled spins is
four or larger [3-5]. A first-order phase transition in certain order—disorder FE has been
observed recently. The transition of C4Hz04 near T, = 373 K is just one example [6].
The squaric acid (C4H,04, H,S8Q) has a layered structure [7]. Each molecule is a square
with oxygen ions at its four vertices linked by hydrogen bonds on equal footing. At
room temperature the layers are ferroelectrically ordered and antiferroelectrically stacked.
Protons move randomly along the hydrogen bonds above the transition temperature and
ordered motion results at a critical temperature. The net dipole moment produced in this
case lies in the plane of the square, a different situation from that of KDP [8], one of the
typical order—disorder FE. So, it is clear that in a ferroelectric material of order—disorder
type, the four hydrogen bonds usually appear as a group and every one is equivalent to
another. This means that the four-body interaction in such structures is generally important.
In fact, Deiningham and Mehring [7] have pointed out the existence of four-body interaction
in the C4H,04 structure but neglected it in their calculations; hence, their result is still a
second-order phase transition.

Recently Wang et af, {9, 10] on the basis of the pseudospin theory have considered
the four-spin interaction to study the first-order phase transition in squaric acid. The
critical behaviour is investigated and characteristic temperatures are calculated. The relative
polarization is discussed. Using the same model and the method of the retarded Green’s
function Wesselinowa and Marinov [11] have determined the relative polarization, the
spin-wave energy and the damping and discussed these for different model parameters
and for different temperatures. Chaudhuri et al [12] have investigated the temperature
dependences of the dielectric properties at different fixed pressures and the phase transition
of H8Q and its deuterated form using the four-sublattice pseudospin cluster Hamiltonian,
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together with a pseudospin—phonon interaction term. The small value of the transition
entropy AS observed in H,5Q [13] seems to be due to the large value of the proton—lattice
interaction constant, i.e. this indicated the importance of proton—-phonon and phonon—phonon
interactions. Recently Serra et al [14] have investigated the temperature dependence of some
Raman modes of KDP below the ferroelectric phase transition. Two lattice modes display
an exponential dependence on T which is explained by third- and fourth-order anharmonic
effets. '

Matsubara et al [15] presented a microscopic theory to explain the improper ferroelastic
phase transition in squanc acid. It was shown that the strong coupling between the lattice
distortion and the proton system is important. H:SQ belongs to the space group Cgy,.
The spontaneous strain tensor should be either &; — £ or gg which have symmetry of
Bg type. Then, the possible lowest-order coupling between the strain and order parameter
is linear in the strain and quadratic in the order parameter. Within the molecular field
approximation, they discussed the thermodynamic properties of the model system and
calculated theoretically the elastic constant and dielectric susceptibility. They have left
many interesting dynamical problems untouched. These include the intensity and line width
of Raman scattering [16, 171, the spin—lattice relaxation time in NMR experiment and so on
[18-20]. It will be an interesting theoretical problem to work out such dynamical properties
on the basis of a model which can afford a good account of the static properties [9-11].

This is the aim of the present paper—to extend the treatment of our previous paper
[11] including the spin—phonon interaction, i.e. the calculation of the static and dynamic
properties of order—disorder FE with first-order phase transitions on the basis of the Ising
model in a transverse field including four-spin and spin—phonon interactions, taking into
account higher-order anharmonic phonon interaction terms.

2. Model and method

The Hamiltonian of the coupled pseudospin—phonon model is given by

H = H, + Hy + H,. (1)
H; is the Hamiltonian of the pseudospin system
1 |
Ho=-2Q% 5 - 3 > JySEsE - Z > KijuSiSESESE @)
i i} Pk

where © is the tunnelling frequency. J;; is the two-body coupling and it represents the
coupling between protons in neighbouring layers as well as those in the same layer. The
four-body coupling Ky represents the interaction between the four hydrogen bonds in the
C40; group.

H, contains the lattice vibrations including third- and fourth-order anharmonic phonon
interactions

1 153 ]
H, = o Zq:gpqp_q +w;_QqQ_q) +3 Z B(q,4.32¢0 -4, 2a.—q

T q.q

1 -
+:{1' Z A(q: g, QS) Qq, Qq, Q"'Q—Qa Q“‘h"‘q (3)

A
where @4, Py and wy are, respectively, the normal coordinate, momentum and frequency
of the lattice mode with wave vector g. The vibrational normal coordinate Q4 and the
momentum P, can be expressed in terms of phonon creation and annihilation operators:

Q= Qo)™ Plag+aly)  Py=ilwg/2)Ma} —a_y) @)
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where [a,; a;,]_ = Sgqr.
Hy, describes the interaction of the pseudospins with the phonons

Hp=—Y F®D.q)Qp o553, — = Z Rk, P, @)QkQ kipaSiS?, )
q. D

qpk

where F and R designate the amplitudes
= 1 1 - .
F(p, @) = —= > —(epq - W' ()P + "
(p q ﬁ - h(eﬂ q )

F(p,q) = F(p, 9)/(Qwp-g)"/?

and
J'(h ‘h)epipq -l
R(k PQ) = ——— Z|: (J"(R) — ( ) (€ - )(ehzk+p g 1)
+Z f(l ) ex.- e—k+p—q)] (1 — e* M) 1 &7h)

R(k,p, @) = Rk, p, @)/ (40r@—fp-g)'/*

for coupling phonons to the spin-wave excitations in H; in first and second order,
respectively. The summations extend over the vector r; — r; = h connecting all possible
pairs of spin sites in the crystal, and e, is the polarization of the phonon with wave number g.

In the ferrcelectric phase we have (5*) # 0 and (8%) £ 0; therefore it is appropriate to
choose a new coordinate system by rotating the original one used in (1) by an angle & in
the xz plane,

[(1— 20) cosB — (b} + by) sing]

[(1—2m)siné + (b; + b} cosd]

(b] — by). (6

Ml—-ml-—to|~

The rotation angle @ is determined by the requitement {S*') = 0 in the new coordinate
system. & and b;r are the Pauli operators in the rotated system; g = b}-b[. In this paper we
consider only the case § = 1/2.

The retarded Green’s function to be calculated is defined in matrix form as

Gelt) = —i®) ([Be(2): B (7}

The operator By stands symbolically for the set by, b__k, ag. al _r- For an approximate
evaluation of this Green’s function we use Tserkovnikov’s method [21], which is appropriate
for spin problems. After a formal integration of the equation of motion for the Green
function one obtains

Gr(t) = ~i@()[Be: B exp(~iEw(t)1) ®
where :
Eut) e f i (([u(r) RO ALk, B,i(t')])([fkcr),j};cr')]))
Pho o \ Bk, BLE) ([B&(), BLEYD?

&)



1704 J M Wesselinowa et al

with jp, = [Br, Hi]. The time-independent term

£k = {[[Bk, H1, BL))/{[B, BL) (10)

gives the spin-wave energy in the generalized Hartree—Fock approximation. The remaining
time-dependent term includes damping effects.
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Figure 1. Temperature dependence of the spin-wave damping: 1, y (&)1 2, ya; 3. Vip-

3. The spin-wave specirum

3.1. The generalized Hartree-Fock approximation
The energy of the coupled mode in the generalized Hartree-Fock approximation is
EX(k) = 0.5[0} + £ & (@2 — £2)? + dodoy. sin® 8 T5(k)
x (282 5in 6 + 0.50 Jeg cos? #)) /2] (1)

The E_ mode describes an in-phase motion of the pseudospin system and the lattice,
whereas in the E,. mode the two systems move with opposite phase. In the case of 2 — 0
equation (11) shows, since sin@ ~ £2, that no coupling exists between the spin waves and
the phonons. & is the renormalized energy of the phonons and will be discussed in the
next section. g is the energy of the pseudospin system:

e(k) = £/ ()2 — () (12)

&i! =205in0 + 2 Jrcos”6 — T sin” 6 (k) (13)
€2 = —% sin? 8 Jugp(k). (14)

o (T) is the relative polarization in the direction of the mean field which is equal to Z(Sz')
[11]. In the generalized Hartree—Fock approximation we find the following two solutions
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for the rotation angle 8:
cos@ =0 (e 8=m/2) if T>2T; (15)
sin@ =4Q /(o Jep) = ocfo if TLT, (16)
Q.F()(O.SO'Z COSZGF&, — By)dro 17)
wg — 0.502cos2 Ry + A (
From the last equation (17} it is evident that the pseudospin—phonon interaction leads to a
renormalization of the spin—spin interaction constant, which is now temperature dependent.
Proton—phonon interactions can thus produce a phase transition even though the direct
spin-spin interaction constant would be zero. The effects of the phoron anharmonicity
parameters Ay and By are to decrease the effective exchange coupling J.i while the effects
of the pseudospin-lattice coupling F; and Ry are to increase its value. These observations
for Ax and Fy, are in agreement with those of Ganguli ez al [22]. The terms containing Ry
and By are not taken into account in this work [22].

1
Jogr = Jo + ZO’ZKO cos? @ + Rg +

% . 15
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Figure 2. Temperature dependence of the phonon mode  Figure 3. Temperature dependence of the phonon
with wy = 90 em™': 1, & 2. Fy = 0, Kp = 0, damping with ey = 90 cn™h: 1, y(R); 2, Py =

i.e. without spin—phonon interaction; 3, Ao =0, Ffu = O Ry=0;3, Ap=0,B=0.
0. Rg = 0, i.e. without fourth-order anharmeonic phonon
interaction.

3.2, Spin-wave damping

In order to obtain spin-wave damping caused by the spin—phonon interaction we consider
approximately the integral term in (9). In our calculations we use the approximate dynamics
bp{t) = by exp(—ickt) and ap(?) ~ apexp(—iwgt). We get the following expression for
Vi ,

YR = v + v f (18)
¥ss 15 the damping part which comes from the spin—spin interaction and has been discussed
in our previous paper [11}: :

b4 - - - - -
Yes = Zﬁ; 2((“}, kgt Vk—p—q. p-!—q)z[np(] +Rpig+ nk—q) - np+an—q]

X8(Ep—q + Eprg — Ep — £) — SOV, kgl (Jp + JprqVipeg(fip — Ak—q)
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+(Fp + Jrg) ik —qFip — Rpsg)) Ehmg + Eptq — &p — &K)) (19)
with
2,7 1 .5,
Vg, kg = COS“ 05 — 5 sin 8Jx—q (20)
Jg=Jg+ %UZKCI cos* 8 (21)
i
5 oty 2[5 A
fig = (Bl = = (sq coth 2T) 1) 22)
T eiz
Fg = (bl 4b1) = (bgbog} = _23_4 coth (zr) . ©23)

Y (k) takes its maximum values at k = 0; it increases with decreasing tunnelting frequency
2. -
¥sp is the damping due to the spin—phonon interaction:

7 sin® @ cos? @

Ysp = i F]% 8(ay, — 33:)
:r 4cos* 6 + sin® 6)
e 5 (g =) 8o+ g =)
- - . 7(8cos* @ +sin* 8

+(1 +Nq—k+nq)5(5q_wq—k“3k)]+ T6N2 ) Z

X[Np(1 + Np-g + irq) = Np-qiineql 8(@p — Gpmq + Skeq —&6) (24
with

Nq = {a} 2% = 1/[exp{@q/ T} — 1]. (25)
The spin-wave damping (18) was numerically calculated using the following model
parameters appropriate for squaric acidi Jp = 344 em™!, Ko/Jo = 133, @ =

2168 em™, Ap = =12 ecm™ L, Bp =T em™, Fy =36 cm™, Ry = —25 cm™!, oy =
90 cm™', T = 373 K. figure 1 shows the temperature dependence of the spin-wave
damping.
At T = 0 equation (24) simplifies to
7 sin? @ cos? &
4o
m(dcos? 9 + sin* @) .

+ 4N Z

Vsp(T =0)= F}f 3(dr — &)

Fi.8(eq — @gi — &1)- (26)

At low temperatures ¥p is very small. The anharmonic terms do not contribute to the
spin-wave damping at T == 0. With increasing temperature, the damping y;p increases, and
the contribution of the anharmonic term increases, too. For temperatures close to T; and
above 7. where o and cos@ vanish we obtain

7 sin*6

V(T 2 T} = Z 2oL+ Ng_y, + 7g) 8(eq — Pgmk — £8) + (Np—q — fig)

xa(sq + cuk_q — &)}
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7 sin®g
16N2

%8{@Bp+qmp — Bg + &p — £k). - 7

Z R{%,pq[(ﬁq(l + Nk-—l—q—up + ﬁp) - ﬁk+l]—pﬁp1
q.p

it can be seen that the anbharmonic terms give a major contribution to the spin-wave damping
Yep in the vicinity of T; and above T; and so they must be taken into account if we want to
obtain correct results,

For small wave vectors k the damping due to the spin—phonon interaction is small in
comparison with the damping due to the spin-spin interaction,

Vsp (k) € yss(k)- (28)

4. The phonon spectrum

4.1. The phonon energy

For the phonon energy we obtain in the generalized Hartree—Fock approximation the
following expression in the ferroelectric region: .

2pel 22
Gocosc 8 sin“ &
_2 2 -
W = W = Zwk( R -+ E Righg
q .

4 4N
1 _ B
—— Y A (@Ng+ 1) — Br{Qx¥io (29}
2N Zq: e )
with

{Qr) = {an -l-afk) = (0.5cr2 cos> 6 F, — % ; qu(zﬁq + ]))

-1
1 -
x (wk —050%cos?ORy, + 5 > AN, + 1)) ) (30)
q

The phonon energy wy, is renormalized due to the anharmonic phonon interaction terms. If
they are not taken into account, then @y, is identical with the energy of the uncoupled phonon
wy, [23]. @y is dependent on the tunnelling frequency 2. The anharmonicity increases the
initial phonon frequency. The modification of the phonon frequency appears to be very
important {22] as in the case of Rochelle salt where the disappearance of ferroelectricity
[24] in presence -of foreign impurities was explained [25] by considering the change of
renormalized phonon frequency [26].

We have studied the temperature dependence of the phonon frequencies from (29) for one
particular phonon mode with ey = 90 ¢cm ™! using the same model parameters as in figure 1.
The phonon mode displays a non-linear dependence on temperature when T approaches T
(figure 2). Since it is a lattice mode this behaviour can be described to strong anharmonic
effects. It can also be associated with an anomalous increase of the dielectric constant in
the same temperature interval. If we take into account only the third-order interaction terms
in (3) (i.e. Ag =0, By # 0), then we obtain a linear temperature dependence close to T,
(curve 3). It is evident that there 15 a strong anharmonicity affecting the phonon modes
near the transition point from the ferroelectric to the paraelectric phase. The temperature
behaviour of the phonon mode is in very good agreement with the experimental data of
Nakashima ez af [16] and of Samuelson er al [17].
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4.2. The phonon damping

Calculations yield the following expression for the phonon damping in the ferroelectric
region:

a9
o sin® 8 cos? wcostd
You(k) = ———————

3 Fk (e — @p) + e

:rrc sin* 6 _ - -
Z k(nq - nq—.‘c) 8(6g—k — &g — or)

Ri 3(er — éop)

mo(l6cos 6 + sin* )
16N2

*8(Dpyp—q g —8p — wk)

163: o - - - -
Z A7 qp[Np(l + N+ Np+k—q) — NgNpik—ql

Z qup [7ig(L + fip + ﬁp+k-q) ~ fipNpk-q]

xa(coq @y + Dptk—q — Ok)
9 5 .= -
+F ; qu(Nq — Nip—g)
X[§(Dg — Bp—g — Dr) — 6(—Dq + Dp—q — D). (31
Analogously to section 4.1 we want to discuss the phonon damping on temperature, wave
vector, and anharmonicity. The temperature dependence of ypn obtained using the same

model parameters as in figure 1 is shown in figure 3.
Firstly we consider the zero-temperature limit 7 = 0:

hrg T
yon(T = 0) = (TG sin’ 6 cos” 9 F + T cos* eﬁfc) 5(ex — iop).- (32)

Provided that the §-function can be satisfied, we get a phonon damping at T = 0 due to
the spin-phonon coupling. The spin—phonon anharmonic terms contribute to 3 at T = 0
and at low temperatures. The phonon-phonon anharmonic terms do not contribute to , at
T =0 and at low temperatures. A finite value for yn at T = 0 was found experimentally
in KDP by Serra et al [14] and squaric acid by Nakashima e al [16] and Samuelson et af
[17]. With increasing temperature yp, increases, but remains finite at 7 = 7;. The phonon
damping in the paraelectric region is given by the last two terms in (31)

lox - - - - - -
yon(T 2 T} = Nz ZAiqp[Np(l + Ng+ Npik—q} — NgNprk—q]
q. P
X3 (@g — Wp + Bpaimg — Dk)
S _ -
+5 2 Big(Wo = Neg)
q

X[é(&')q - E)k—q - f;)k) e 6("'51;-‘{“ C.f)k—q - EJk)] (33)

We can see that only the third- and fourth-order phonon—phonon anharmoenic terms contribute
to the phonon damping in the vicinity of T, and above T;; and so they play an important
role, Above T; ypn is nearly temperature independent.

The temperature behaviour of the phonon damping obtained is in very good agreement
with the experimental data for H,5Q [16, 17, 27].

For small wave vector & and at temperatures above Tg, ¥, is small compared with the
spin-wave damping y!!

ven(k) < v (k). (34)
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The dynamical structure factor is calculated via the imaginary part of the phonon Green's
function ({Qk; Q-x)}. The intensity increases with i mcreasmg temperature, in agreement
with the findings of Samuelsen er al [17].

5. Conclasions

‘We have studied the Ising model in a transverse field including four-spin interaction, which
is responsible for the first-order phase transition observed in order—disorder FE, and spin—
phonon interaction, taking into account higher-order anharmonic phonon interaction terms.

Using the method of the retarded Green’s function we have determined the spin-wave
and the phonon spectrum. We have shown the importance of the anharmonic terms in
the spin—phonon interaction and in the phonon-phonon iateraction. If we want to obtain
correct results, they must be taken into account. As far as we know, the expressions and
the discussion of the spin-wave energy, the phonon energy and the damping are given for
the first time.
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